。”
许秋暗自琢磨了一会儿,开始仔细研究CH2的数据。
IDT-IN体系中,用到的D单元是IDT结构,IDT算是有机光伏领域近期兴起的一个结构,分子结构比较复杂,是由四个噻吩环和一个苯环以线性稠环连接,有四个侧链位点,中文英译名称为引达省并二噻吩类。
有趣的是,效率最高的体系中,采用的给体材料不是常见的窄带隙材料,比如PCE10、P3TEA之类的,而是一个少见的宽带隙的聚合物给体FTAZ。
思考了一会儿,许秋便大概理解了原因,其中应该涉及了光吸收互补的问题。
对于传统富勒烯衍生物,以及非富勒烯PDI受体来说,光吸收范围通常在300-600纳米,属于宽带隙材料,因而与之匹配的给体材料,就要选择光吸收范围在500-800纳米附近的窄带隙材料。
而现在学姐合成的A-D-A类分子不同,可以通过调控D、A单元的结构,控制其光吸收范围。
比如这个CH2,颜色就是蓝黑色的,本身是一种窄带隙的材料,故而与之匹配的给体材料是宽带隙的为好,这样才能保证光吸收互补。
值得注意的是,尽管PCE10和CH2均为窄带隙材料,它们的光吸收范围大幅度重叠,但基于PCE10:CH2的体系,最高效率也能做到2.46%。
这样看来,PCE10能成为近些年来有机光伏领域的标准给体材料,确实是有两把刷子的——
这材料的普适性确实够好,和大多数新开发出来的受体材料都能够适配,哪怕是光吸收不互补的。
毕竟其他人不似许秋一样,可以通过模拟实验系统大批量的尝试不同条件。
对许秋来说,只要他大方向把握的没问题,模拟实验室II中花费一天的时间,就能够完成其他人一个月的工作量。
不得不说,系统在这方面还是非常给力的。
而对大多数研究者来说,通用的做法是选择一个底子不太差的体系,然后一条路走到黑,不断试错。
他们也很无奈,总不能一个体系做了半个月、一个月,然后突然换一个新的体系吧,沉没成本太高了。
因此,像PCE10这样具有普适性的材料自然是香饽饽,哪怕无法得到最高值,获得一个较高值也算不错。
当然,从长远来看,假如未来各类窄带隙的A-D-A受体被广泛研究,势必要合成对应的宽带隙给体材料,
许秋暗自琢磨了一会儿,开始仔细研究CH2的数据。
IDT-IN体系中,用到的D单元是IDT结构,IDT算是有机光伏领域近期兴起的一个结构,分子结构比较复杂,是由四个噻吩环和一个苯环以线性稠环连接,有四个侧链位点,中文英译名称为引达省并二噻吩类。
有趣的是,效率最高的体系中,采用的给体材料不是常见的窄带隙材料,比如PCE10、P3TEA之类的,而是一个少见的宽带隙的聚合物给体FTAZ。
思考了一会儿,许秋便大概理解了原因,其中应该涉及了光吸收互补的问题。
对于传统富勒烯衍生物,以及非富勒烯PDI受体来说,光吸收范围通常在300-600纳米,属于宽带隙材料,因而与之匹配的给体材料,就要选择光吸收范围在500-800纳米附近的窄带隙材料。
而现在学姐合成的A-D-A类分子不同,可以通过调控D、A单元的结构,控制其光吸收范围。
比如这个CH2,颜色就是蓝黑色的,本身是一种窄带隙的材料,故而与之匹配的给体材料是宽带隙的为好,这样才能保证光吸收互补。
值得注意的是,尽管PCE10和CH2均为窄带隙材料,它们的光吸收范围大幅度重叠,但基于PCE10:CH2的体系,最高效率也能做到2.46%。
这样看来,PCE10能成为近些年来有机光伏领域的标准给体材料,确实是有两把刷子的——
这材料的普适性确实够好,和大多数新开发出来的受体材料都能够适配,哪怕是光吸收不互补的。
毕竟其他人不似许秋一样,可以通过模拟实验系统大批量的尝试不同条件。
对许秋来说,只要他大方向把握的没问题,模拟实验室II中花费一天的时间,就能够完成其他人一个月的工作量。
不得不说,系统在这方面还是非常给力的。
而对大多数研究者来说,通用的做法是选择一个底子不太差的体系,然后一条路走到黑,不断试错。
他们也很无奈,总不能一个体系做了半个月、一个月,然后突然换一个新的体系吧,沉没成本太高了。
因此,像PCE10这样具有普适性的材料自然是香饽饽,哪怕无法得到最高值,获得一个较高值也算不错。
当然,从长远来看,假如未来各类窄带隙的A-D-A受体被广泛研究,势必要合成对应的宽带隙给体材料,
本章未完,请点击下一页继续阅读》》